报告主题: From System 1 Deep Learning to System 2 Deep Learning
报告简介: 早期,深度学习的进展主要集中在对静态数据集的学习上,主要用于各类感知任务,这些任务大都依靠人类的直觉,可以在无意识的情况下完成,可称为第一代系统需求。然而,最近几年,随着研究方向的转变和一些新工具的出现诸如soft-attention和深度强化学习领域的进展,它们为深度学习架构和训练框架的进一步发展,开启了新的大门,这种深度架构和训练框架有助于解决第二代系统需求(这种系统任务需要人类有意识的去完成),如在自然语言处理和其他应用当中的推理、规划、因果关系捕获和系统归纳等。从第一代系统的深度学习,扩展到第二代系统的任务之中,对于完成之前挖掘高层次抽象特征的目标是非常重要的,因为我们认为第二代系统需求,将会对表征学习提出更高的要求,以发掘出某种人类可以用语言进行巧妙处理的高级内容。我们认为,为了达到这个目标,soft-attention机制是关键因素,它每次都关注其中某几个概念并进行计算,因为意识先验及其相关的假设中,许多高层次的依赖关系可以被一个稀疏因子图近似地捕捉到。最后,报告介绍了元学习,这种先验意识和代理视角下的表征学习,会更加有助于以新颖的方式,支持强大的合成泛化形式。
嘉宾介绍: Yoshua Bengio是蒙特利尔大学计算机科学与运筹学系的教授,Mila和IVADO的科学总监和创始人,2018年图灵奖获得者,加拿大统计学习算法研究主席以及加拿大AI CIFAR主席。 他开创了深度学习的先河,并在2018年每天获得全球所有计算机科学家中最多的引用。 他是加拿大勋章的官员,加拿大皇家学会的成员,并于2017年被授予基拉姆奖,玛丽·维克多奖和年度无线电加拿大科学家,并且是NeurIPS顾问的成员, ICLR会议的董事会和联合创始人,以及CIFAR“机器和大脑学习”计划的程序总监。 他的目标是帮助发现通过学习产生智力的原理,并促进AI的发展以造福所有人。