A novel unconstrained optimization model named weighted trace-penalty minimization (WTPM) is proposed to address the extreme eigenvalue problem arising from the Full Configuration Interaction (FCI) method. Theoretical analysis shows that the global minimizers of the WTPM objective function are the desired eigenvectors, rather than the eigenspace. Analyzing the condition number of the Hessian operator in detail contributes to the determination of a near-optimal weight matrix. With the sparse feature of FCI matrices in mind, the coordinate descent (CD) method is adapted to WTPM and results in WTPM-CD method. The reduction of computational and storage costs in each iteration shows the efficiency of the proposed algorithm. Finally, the numerical experiments demonstrate the capability to address large-scale FCI matrices.
翻译:暂无翻译