Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data. However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for human subject related recognition such as person re-identification (Re-ID). In this work, we solve the Re-ID problem by decentralised learning from non-shared private training data distributed at multiple user sites of independent multi-domain label spaces. We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients). Specifically, each local client receives global model updates from the server and trains a local model using its local data independent from all the other clients. Then, the central server aggregates transferrable local model updates to construct a generalisable global feature embedding model without accessing local data so to preserve local privacy. This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any centralised data. Extensive experiments on ten Re-ID benchmarks show that FedReID achieves compelling generalisation performance beyond any locally trained models without using shared training data, whilst inherently protects the privacy of each local client. This is uniquely advantageous over contemporary Re-ID methods.


翻译:由于提供了共享和集中的大规模培训数据,许多计算机愿景任务方面的深层学习取得了成功。然而,对隐私关注的认识的提高给深层学习带来了新的挑战,特别是对于与人重新身份(Re-ID)等人类主题相关的承认,特别是对于重认身份(Re-ID)等人类主题的承认而言。在这项工作中,我们通过从独立多域标签空间多个用户点分发的非共享私人培训数据中分散学习,解决了重新开发问题。我们提出了一个名为“FedReID”(FedReID)的新模式,以构建一个通用的全球模式(中央服务器),通过与多种保密的当地模式(当地客户)同时学习。具体地说,每个当地客户都从服务器接收全球模型更新信息,并利用独立于其他客户的本地数据来培训当地模式。 中央服务器汇总可移动的本地模型更新数据,在不获取本地数据的情况下建立通用的嵌入模型,从而保护当地隐私。客户协作学习进程是在隐私控制下反复进行,使FedReID能够在共享数据或收集任何中央化数据的情况下实现分散的学习,具体化的模型。在不局限于客户标准方面进行广泛的试验。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月15日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
9+阅读 · 2021年2月25日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Top
微信扫码咨询专知VIP会员