The common approach to compositional data analysis is to transform the data by means of logratios. Logratios between pairs of compositional parts (pairwise logratios) are the easiest to interpret in many research problems. When the number of parts is large, some form of logratio selection is a must, for instance by means of an unsupervised learning method based on a stepwise selection of the pairwise logratios that explain the largest percentage of the logratio variance in the compositional dataset. In this article we present three alternative stepwise supervised learning methods to select the pairwise logratios that best explain a dependent variable in a generalized linear model, each geared for a specific problem. The first method features unrestricted search, where any pairwise logratio can be selected. This method has a complex interpretation if some pairs of parts in the logratios overlap, but it leads to the most accurate predictions. The second method restricts parts to occur only once, which makes the corresponding logratios intuitively interpretable. The third method uses additive logratios, so that $K-1$ selected logratios involve exactly $K$ parts. This method in fact searches for the subcomposition with the highest explanatory power. Once the subcomposition is identified, the researcher's favourite logratio representation may be used in subsequent analyses, not only pairwise logratios. Our methodology allows logratios or non-compositional covariates to be forced into the models based on theoretical knowledge, and various stopping criteria are available based on information measures or statistical significance with the Bonferroni correction. We present an illustration of the three approaches on a dataset from a study predicting Crohn's disease. The first method excels in terms of predictive power, and the other two in interpretability.


翻译:构成数据分析的通用方法是使用对数校正来转换数据。 配对的成份( pairwise logratios) 之间的logratio 是在许多研究问题中最容易解释的。 当部件数量大时, 某种形式的对数选择是必然的, 例如, 一种不受监督的学习方法, 其基础是分步选择对数对数的对数对数对数对数对数对数对数对数对数的校对数校正数。 在此文章中, 我们提出了三种替代的、 分步监督的学习方法, 以选择配对的对数对数对数对数对数对数的对数对数对数对数对数, 每种对数对数对数对数的对数对数对数对数对数对数对数对数对数对数, 三种方法对数对数对数对数的对数对数对数对数对数对数对数的对数对数对数对数, 。 第三个方法使用对数对数对数的对数的对数的对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数的计算法,,, 将只能只能只能算算算算算算算法的对数对数的对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数的计算,是非,是非,算法是非,算法的计算法对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数对数

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
4+阅读 · 2020年3月19日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
17+阅读 · 2021年2月15日
Arxiv
4+阅读 · 2020年3月19日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Top
微信扫码咨询专知VIP会员