In this study we worked on the classification of the Chess Endgame problem using different algorithms like logistic regression, decision trees and neural networks. Our experiments indicates that the Neural Networks provides the best accuracy (85%) then the decision trees (79%). We did these experiments using Microsoft Azure Machine Learning as a case-study on using Visual Programming in classification. Our experiments demonstrates that this tool is powerful and save a lot of time, also it could be improved with more features that increase the usability and reduce the learning curve. We also developed an application for dataset visualization using a new programming language called Ring, our experiments demonstrates that this language have simple design like Python while integrates RAD tools like Visual Basic which is good for GUI development in the open-source world
翻译:在这次研究中,我们运用后勤回归、决策树和神经网络等不同算法,对Ches Endgame问题进行了分类。我们的实验表明,神经网络提供了最佳的准确性(85%),然后提供了决策树(79%)。我们用微软Azure机器学习进行了这些实验,作为在分类中使用视觉编程的案例研究。我们的实验表明,这一工具非常强大,节省了大量时间,还可以通过更多能增加可用性和减少学习曲线的特性加以改进。我们还开发了一个数据集可视化应用程序,使用了一种叫做Ring的新编程语言,我们的实验表明,这种语言具有像Python这样的简单设计,同时结合了像视觉基础这样的RAD工具,这对开放源世界的界面开发是很好的。