Spectral compressive imaging (SCI) is able to encode the high-dimensional hyperspectral image to a 2D measurement, and then uses algorithms to reconstruct the spatio-spectral data-cube. At present, the main bottleneck of SCI is the reconstruction algorithm, and the state-of-the-art (SOTA) reconstruction methods generally face the problem of long reconstruction time and/or poor detail recovery. In this paper, we propose a novel hybrid network module, namely CCoT (Convolution and Contextual Transformer) block, which can acquire the inductive bias ability of convolution and the powerful modeling ability of transformer simultaneously,and is conducive to improving the quality of reconstruction to restore fine details. We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CCoT network. Through the experiments of extensive synthetic and real data, our proposed model achieves higher reconstruction quality ($>$2dB in PSNR on simulated benchmark datasets) and shorter running time than existing SOTA algorithms by a large margin. The code and models are publicly available at https://github.com/ucaswangls/GAP-CCoT.
翻译:光谱压缩成像(SCI)能够将高维超光谱图像编码为2D测量,然后使用算法重建spatio-光谱数据立方体。目前,SCI的主要瓶颈是重建算法,以及最先进的重建方法(SOTA)通常面临长期重建时间和/或细节恢复不良的问题。在本文中,我们提出一个新的混合网络模块,即CCOT(演化和背景变异器)块,它能够同时获得熔化和变异器强大建模能力的诱导偏差能力,并有利于改善重建质量,以恢复细微细节。我们把拟议的CCOT块纳入以普遍交替预测算法为基础的深入发展的框架,并进一步提议GAP-CoT网络。通过广泛的合成和真实数据的实验,我们提议的模型达到更高的重建质量(在模拟基准数据集上的PSNR(PSNR) $> 2dB) 和比现有的SATA算法更短的时间。在大边缘可以公开获得的代码和模型。