We propose and demonstrate a new approach for fast and accurate surrogate modelling of urban drainage system hydraulics based on physics-guided machine learning. The surrogates are trained against a limited set of simulation results from a hydrodynamic (HiFi) model. Our approach reduces simulation times by one to two orders of magnitude compared to a HiFi model. It is thus slower than e.g. conceptual hydrological models, but it enables simulations of water levels, flows and surcharges in all nodes and links of a drainage network and thus largely preserves the level of detail provided by HiFi models. Comparing time series simulated by the surrogate and the HiFi model, R2 values in the order of 0.9 are achieved. Surrogate training times are currently in the order of one hour. However, they can likely be reduced through the application of transfer learning and graph neural networks. Our surrogate approach will be useful for interactive workshops in initial design phases of urban drainage systems, as well as for real time applications. In addition, our model formulation is generic and future research should investigate its application for simulating other water systems.
翻译:我们提出并展示了一种基于物理制导机器学习的城市排水系统液压系统快速和准确替代模型的新方法。代孕人根据来自流体动力学(HiFi)模型的一套有限的模拟结果接受培训。我们的方法比HiFi模型将模拟时间减少一至两个数量级,因此比概念水文模型要慢一些,但在排水网络的所有节点和链接中都能够模拟水的水平、流量和附加费,从而在很大程度上保持HiFi模型提供的详细程度。代孕人和HiFi模型模拟的时间序列比较,R2值为0.9级。目前,代孕培训时间约为1小时。不过,通过应用转移学习和图形神经网络,这些时间可能会减少。我们的代孕方法将有益于城市排水系统初始设计阶段的互动讲习班以及实时应用。此外,我们的模型编制是通用的,未来研究应调查其用于模拟其他水系统的应用。