Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnoses of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling". Accordingly, we propose a Multiscale-Atlases-based Hierarchical Graph Convolutional Network (MAHGCN), built on the stacked layers of graph convolution and the atlas-guided pooling, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD (i.e., mild cognitive impairment [MCI]), as well as autism spectrum disorder (ASD), with accuracy of 88.9%, 78.6%, and 72.7% respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning, but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for better understanding the neuropathology of brain disorders.
翻译:功能连接网络(FCN) 功能性磁共振成像(fMRI) 的功能性磁共振成像(FCN) 数据正越来越多地用于诊断大脑失常。然而,我们使用最新技术研究,使用某种空间尺度的单一脑包状图谱构建FCN,这在很大程度上忽视了不同空间空间尺度的功能互动。在这个研究中,我们提出了一个新框架,用于进行多层的磁共振成像分析脑疾病诊断。我们首先使用一套定义明确的多尺度多尺度的多尺度图集来计算多尺度FCN。然后,我们利用多尺度图集中各区域具有生物意义的大脑等级关系,在多个空间尺度的图集中进行节点集合,即“阿特拉斯导集合 ” 。因此,我们提议了一个多尺度的基于高层次的高度结构图谱结构网络(MAHGCN),在图解变异变和图集集合中,为了全面提取多尺度FCNSCN的诊断信息,我们从1792个科目中进行有生命意义的实验,从179个主题中进行神经测数据实验,展示了我们提议的多尺度的大脑诊断分析结构诊断结构分析的效益分析的效益,,在分析中,在分析中也算中展示了系统化了系统分析系统分析系统分析系统分析系统化的精精度的精度的精度的精度, 。