Path planning in an uncertain environment is a key enabler of true vehicle autonomy. Over the past two decades, numerous approaches have been developed to account for errors in the vehicle path while navigating complex and often uncertain environments. An important capability of such planning is the prediction of vehicle dispersion covariances about a candidate path. This work develops a new closed-loop linear covariance (CL-LinCov) framework applicable to a wide range of autonomous system architectures. Important features of the developed framework include the (1) separation of high-level guidance from low-level control, (2) support for output-feedback controllers with internal states, dynamics, and output, and (3) multi-use continuous sensors for navigation state propagation, guidance, and feedback control. The closed-loop nature of the framework preserves the important coupling between the system dynamics, exogenous disturbances, and the guidance, navigation, and control algorithms. The developed framework is applied to a simplified model of an unmanned aerial vehicle and validated by comparison via Monte Carlo analysis. The utility of the CL-LinCov information is illustrated by its application to path planning in a static, uncertain obstacle field via a modified version of the Rapidly Exploring Random Tree algorithm.


翻译:在一个不确定的环境中规划路径是真正车辆自主的关键促成因素。在过去二十年中,已经制定了许多办法,在航行复杂且往往不确定的环境时,对车辆路径错误进行核算;这种规划的一个重要能力是预测车辆对候选路径的分散共变情况。这项工作开发了适用于各种自主系统结构的新的闭路线线线性共变(CL-LinCov)框架。发达框架的重要特点包括:(1) 将高层指导与低层控制分开;(2) 支持以内部状态、动态和输出提供产出反馈控制器;(3) 导航状态传播、指导和反馈控制的多用途连续传感器。框架的闭路性质保留了系统动态、外扰动以及指导、导航和控制算法之间的重要组合。开发的框架适用于无人驾驶航空飞行器的简化模型,并通过蒙特卡洛分析加以比较验证。CL-LinCov信息的实用性,通过应用它来在静态、不确定的路径规划领域,通过修改的Rast Rast Rast Raling 算法来说明其应用。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
carla 代码运行逻辑混乱的笔记1
CreateAMind
5+阅读 · 2018年3月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
carla 代码运行逻辑混乱的笔记1
CreateAMind
5+阅读 · 2018年3月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员