We extend the FE-DMN method to fully coupled thermomechanical two-scale simulations of composite materials. In particular, every Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN). Such a DMN serves as a high-fidelity surrogate model for full-field solutions on the microscopic scale of inelastic, non-isothermal constituents. Building on the homogenization framework of Chatzigeorgiou et al. [Int. J. Plast, vol. 81, pp. 18--39, 2016], we extend the framework of DMNs to thermomechanical composites by incorporating the two-way thermomechanical coupling, i.e., the coupling from the macroscopic onto the microscopic scale and vice versa, into the framework. We provide details on the efficient implementation of our approach as a user-material subroutine (UMAT). We validate our approach on the microscopic scale and show that DMNs predict the effective stress, the effective dissipation and the change of the macroscopic absolute temperature with high accuracy. After validation, we demonstrate the capabilities of our approach on a concurrent thermomechanical two-scale simulation on the macroscopic component scale.
翻译:我们推广FE-DMN方法,将合成材料的热机械两尺度模拟完全结合使用,特别是,宏形定质元件模型的每个高点都配备了深材料网络(DMN)。DMN是一种高纤维代金模型,用于在无弹性、非热性成分的微粒规模上和反之,从显微粒规模上进行全方位解决方案。我们根据Catzigeorgiou等人[Int. J. Plast, vol. 81, pp. 18-39, 2016]的同质框架,我们将DMNS框架扩展至热机械复合框架,将双向热机械组合,即从微粒规模上和反之,结合到框架中的全方解决方案。我们详细介绍了我们作为用户-材料亚轨道(UMAAT)有效实施方法的情况。我们验证了我们在微粒规模上的做法,并显示DMMS预测有效压力、高温度后,即从高温度上展示了我们两个比例的宏观模型的精确度变化。