The aim of this article is to study the effect of an Event Horizon on the entanglement of the Quantum Vacuum and how entanglement, together with the Holographic Principle, may explain the current value of the Cosmological Constant, in light of recent theories. Entanglement is tested for vacuum states very near and very far from the Horizon of a de Sitter Universe, using the Peres-Horodecki (PPT) criterion. A scalar vacuum field ($\hat{\phi}$) is averaged inside two boxes of volume $V$ in different spatial positions such that it acquires the structure of a bipartite Quantum Harmonic Oscillator, for which the PPT criterion is a necessary but not sufficient condition of separability. Entanglement is found between states obtained from boxes shaped as spherical shells with thickness of the order of one Planck distance ($l_p$), when one of the states is near the Horizon, and the other state is anywhere in the Universe. Entanglement disappears when the distance of the state near the horizon and the Horizon increases to around $5l_p$. If we consider the Horizon not as a surface but as a spherical shell of thickness $l_p$, then this means that there is entanglement between the states in the Horizon and the rest of the Universe. When both states are at distances larger than $\sim 5 l_p$ from the Horizon, no entanglement is found.


翻译:文章的目的是研究“ 事件地平线” 对量子瓦库姆的纠缠效应, 以及结合“ 全方位原则” 如何根据最近的理论解释宇宙常数的当前价值。 “ 缠绕” 是针对非常接近和非常远离“ 蒸发” 宇宙地平线的真空状态测试的, 使用 Peres- Horodecki (PPT) 标准。 一个州接近地平线时, 另一州位于宇宙的任何地方, 而另一个州则位于该地平线和地平线之间, 当它获得双方平面“ 量子” 调和“ 整体原则” 结构时, 怎样的缠绕可以解释宇宙常态的当前值。 “ PPPT” 标准对于它来说是必要的, 但不足够具有可分离性的条件。 “ 缠绕在一起, 以球壳形状为外壳, 在一个州接近地平线距离的状态下, 而另一个州位于宇宙的任何地方。 当地平线距离接近地平线的距离比 地平面的距离更远时, 我们就会消失。 “ ” 。 “ 地平地平地平面” 的距离不是地平地平地平地平地平地平面上的距离, 。 。 。, 。 以5美元是 。 。 在地平平平平平平平平平平平平面 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年12月2日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年4月9日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员