In this document, a neural network is employed in order to estimate the solution of the initial value problem in the context of non linear trajectories. Such trajectories can be subject to gravity, thrust, drag, centrifugal force, temperature, ambient air density and pressure. First, we generate a grid of trajectory points given a specified uniform density as a design parameter and then we investigate the performance of a neural network in a compression and inverse problem task: the network is trained to predict the initial conditions of the dynamics model we used in the simulation, given a target point in space. We investigate this as a regression task, with error propagation in consideration. For target points, up to a radius of 2 kilometers, the model is able to accurately predict the initial conditions of the trajectories, with sub-meter deviation. This simulation-based training process and novel real-world evaluation method is capable of computing trajectories of arbitrary dimensions.


翻译:在此文件中,使用神经网络来估计非线性轨迹初始值问题的解决方案。 这种轨迹可以受重力、推力、拖力、离心力、温度、周围空气密度和压力的影响。 首先,我们生成一个轨迹点网格,给出一个特定的统一密度作为设计参数,然后我们调查神经网络在压缩和反向问题任务中的性能: 网络受过培训,可以预测我们在模拟中使用的动态模型的初始条件, 给一个空间的目标点。 我们将此作为回归任务来调查, 考虑错误传播。 对于目标点, 该模型可以准确预测轨道的初始条件, 以二公里为半径, 且有次偏差。 这种模拟培训过程和新颖的现实世界评价方法能够计算任意尺寸的轨迹。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
73+阅读 · 2021年5月28日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
45+阅读 · 2020年10月31日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员