In this document, a neural network is employed in order to estimate the solution of the initial value problem in the context of non linear trajectories. Such trajectories can be subject to gravity, thrust, drag, centrifugal force, temperature, ambient air density and pressure. First, we generate a grid of trajectory points given a specified uniform density as a design parameter and then we investigate the performance of a neural network in a compression and inverse problem task: the network is trained to predict the initial conditions of the dynamics model we used in the simulation, given a target point in space. We investigate this as a regression task, with error propagation in consideration. For target points, up to a radius of 2 kilometers, the model is able to accurately predict the initial conditions of the trajectories, with sub-meter deviation. This simulation-based training process and novel real-world evaluation method is capable of computing trajectories of arbitrary dimensions.
翻译:在此文件中,使用神经网络来估计非线性轨迹初始值问题的解决方案。 这种轨迹可以受重力、推力、拖力、离心力、温度、周围空气密度和压力的影响。 首先,我们生成一个轨迹点网格,给出一个特定的统一密度作为设计参数,然后我们调查神经网络在压缩和反向问题任务中的性能: 网络受过培训,可以预测我们在模拟中使用的动态模型的初始条件, 给一个空间的目标点。 我们将此作为回归任务来调查, 考虑错误传播。 对于目标点, 该模型可以准确预测轨道的初始条件, 以二公里为半径, 且有次偏差。 这种模拟培训过程和新颖的现实世界评价方法能够计算任意尺寸的轨迹。