Many real-world optimization problems such as engineering optimal design can be eventually modeled as the corresponding multiobjective optimization problems (MOPs) which must be solved to obtain approximate Pareto optimal fronts. Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving MOPs. Recent studies have shown that MOEA/D with uniform weight vectors is well-suited to MOPs with regular Pareto optimal fronts, but its performance in terms of diversity usually deteriorates when solving MOPs with irregular Pareto optimal fronts. In this way, the solution set obtained by the algorithm can not provide more reasonable choices for decision makers. In order to efficiently overcome this drawback, we propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points. Specifically, this strategy consists of the setting and adaptation of reference points generated by the techniques of equidistant partition and projection. For performance assessment, the proposed algorithm is compared with existing four state-of-the-art multiobjective evolutionary algorithms on both benchmark test problems with various types of Pareto optimal fronts and two real-world MOPs including the hatch cover design and the rocket injector design in engineering optimization. According to the experimental results, the proposed algorithm exhibits better diversity performance than that of the other compared algorithms.


翻译:许多现实世界优化问题,如工程优化设计等,最终可以模拟成相应的多目标优化问题(MOP),这些问题必须解决,才能找到大致的Pareto最佳战线。基于分解(MOEA/D)的多目标进化算法被认为是解决MOP(MOEA/D)的一个大有希望的方法。最近的研究显示,具有统一重量矢量的MOEA/D完全适合具有定期Pareto最佳战线的缔约方会议,但在用不正常的Pareto最佳战线解决MOP(MO)时,其在多样性方面的表现通常会恶化。这样,算法所设定的解决方案无法为决策者提供更合理的选择。为了有效克服这一倒退,我们建议通过众所周知的Pascolortetti-Serafini 斯卡拉化方法和新的多参照点战略改进MOEA/D的算法。具体地说,该战略包括确定和调整以等离子分隔和预测技术生成的参考点。关于业绩的评估,拟议的算法与目前四个州比较的比较,而不是为决策者提供更合理的选择。为了有效克服这一倒退的多目的的多目的的算算法,我们提议,在设计上,在火箭的火箭设计上,在标准上,在标准设计上,在两个最优化的模型上,包括最佳的试验中,有两种试验的,在火箭的试验的试验的试验的试验,有各种的,在两个试验的,有各种的,有各种的,有较优的、比,在火箭的、较优的、较优的,在火箭的、比前的、较优的、较优的、较优的、比前的、比的、比的、比的、比的、比的、比的、比的、比的、比在火箭的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、比的、

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2020年8月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员