Objective: A major challenge in designing closed-loop brain-computer interfaces is finding optimal stimulation patterns as a function of ongoing neural activity for different subjects and objectives. Approach: To achieve goal-directed closed-loop neurostimulation, we propose "neural co-processors" which use artificial neural networks and deep learning to learn optimal closed-loop stimulation policies, shaping neural activity and bridging injured neural circuits for targeted repair and rehabilitation. The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation. Here we use simulations to lay the groundwork for future in vivo tests of neural co-processors. We leverage a cortical model of grasping, to which we applied various forms of simulated lesions, allowing us to develop the critical learning algorithms and study adaptations to non-stationarity. Main results: Our simulations show the ability of a neural co-processor to learn a stimulation policy using a supervised learning approach, and to adapt that policy as the underlying brain and sensors change. Our co-processor successfully co-adapted with the simulated brain to accomplish the reach-and-grasp task after a variety of lesions were applied, achieving recovery towards healthy function. Significance: Our results provide the first proof-of-concept demonstration of a co-processor for adaptive activity-dependent closed-loop neurostimulation, optimizing for a rehabilitation goal. While a gap remains between simulations and applications, our results provide insights on how co-processors may be developed for learning complex adaptive stimulation policies for a variety of neural rehabilitation and neuroprosthetic applications.


翻译:目标:设计闭环脑机接口的主要挑战是针对不同的受试者和目标,找到随着进行中的神经活动的变化而变化的最佳刺激模式。方法:为了实现目标导向的闭环神经刺激,我们提出使用人工神经网络和深度学习来学习优化的闭环刺激策略,形成神经活动和目标修复的桥梁。协处理器会随着生物电路自身随着刺激而适应而调整刺激策略,实现一种脑-设备协同适应。在此处,我们使用模拟来为神经协处理器未来的体内测试奠定基础。我们利用了一个抓握的皮层模型,并施加了不同形式的模拟性损伤,使我们能够开发关键的学习算法并研究非稳态的适应。主要结果:我们的模拟表明,神经协处理器能够使用监督学习方法学习刺激策略,并在底层的大脑和感觉器官变化时适应该策略。我们的协处理器成功地与模拟脑协同适应,在施加各种损伤后实现了对健康功能的恢复,完成了伸手抓握任务。意义:我们的结果首次证明了用于适应活动相关闭环神经刺激的协处理器的概念,此刺激可以针对康复目标进行优化。虽然模拟和应用之间仍存在差距,但我们的研究成果提供了关于如何为多种神经康复和神经假肢应用程序开发复杂自适应刺激策略的见解。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
44+阅读 · 2022年9月6日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员