Harmful fine-tuning issues present significant safety challenges for fine-tuning-as-a-service in large language models. Existing alignment-stage defenses, e.g., Vaccine, Repnoise, Booster, and T-Vaccine, mitigate harmful fine-tuning issues by enhancing the model's robustness during the alignment phase. While these methods have been proposed to mitigate the issue, they often overlook a critical upstream factor: the role of the original safety-alignment data. We observe that their defense performance and computational efficiency remain constrained by the quality and composition of the alignment dataset. To address this limitation, we propose Pharmacist, a safety alignment data curation solution that enhances defense against harmful fine-tuning by selecting a high-quality and safety-critical core subset from the original alignment data. The core idea of Pharmacist is to train an alignment data selector to rank alignment data. Specifically, up-ranking high-quality and safety-critical alignment data, down-ranking low-quality and non-safety-critical data. Empirical results indicate that models trained on datasets selected by Pharmacist outperform those trained on datasets selected by existing selection methods in both defense and inference performance. In addition, Pharmacist can be effectively integrated with mainstream alignment-stage defense methods. For example, when applied to RepNoise and T-Vaccine, using the dataset selected by Pharmacist instead of the full dataset leads to improvements in defense performance by 2.60\% and 3.30\%, respectively, and enhances inference performance by 3.50\% and 1.10\%. Notably, it reduces training time by 56.83\% and 57.63\%, respectively. Our code is available at https://github.com/Lslland/Pharmacist.
翻译:暂无翻译