We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.
翻译:我们提出了VeriX,这是在安全关键应用中机器学习模式的可核实解释性的第一步。 具体地说,我们稳妥和最佳的解释可以保证预测不会受到受约束的干扰。 我们使用限制解决技术和特征敏感性排序来有效计算这些解释。 我们评估了我们关于图像识别基准和自主飞机滑行的实际情况的方法。