Most currently used quantum neural network architectures have little-to-no inductive biases, leading to trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in classical machine learning address this crux by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work, we import these ideas to the quantum realm by presenting a general theoretical framework to understand, classify, design and implement equivariant quantum neural networks. As a special implementation, we show how standard quantum convolutional neural networks (QCNN) can be generalized to group-equivariant QCNNs where both the convolutional and pooling layers are equivariant under the relevant symmetry group. Our framework can be readily applied to virtually all areas of quantum machine learning, and provides hope to alleviate central challenges such as barren plateaus, poor local minima, and sample complexity.
翻译:目前使用的大多数量子神经网络结构都几乎没有直线偏差,导致可受训性和一般化问题。在类似问题的启发下,古典机器学习的最近突破通过创建将学习任务的对称编码的模型来解决这个问题。这是通过使用与对称作用相通的等异性神经网络实现的。在这项工作中,我们将这些想法输入量子领域,提出一个理解、分类、设计和实施等同量子神经网络的一般理论框架。作为一个特殊的实施,我们展示了标准量子进化神经网络(QCNN)如何能够被普遍化为QCNNs群-等异性QCNs,在相关对称组中,进化层和集合层都是等异性的。我们的框架可以很容易地应用于量子机器学习的几乎所有领域,并且提供减轻核心挑战的希望,如不毛高、本地微和样本复杂性差等。