The so-called welded tree problem provides an example of a black-box problem that can be solved exponentially faster by a quantum walk than by any classical algorithm. Given the name of a special ENTRANCE vertex, a quantum walk can find another distinguished EXIT vertex using polynomially many queries, though without finding any particular path from ENTRANCE to EXIT. It has been an open problem for twenty years whether there is an efficient quantum algorithm for finding such a path, or if the path-finding problem is hard even for quantum computers. We show that a natural class of efficient quantum algorithms provably cannot find a path from ENTRANCE to EXIT. Specifically, we consider algorithms that, within each branch of their superposition, always store a set of vertex labels that form a connected subgraph including the ENTRANCE, and that only provide these vertex labels as inputs to the oracle. While this does not rule out the possibility of a quantum algorithm that efficiently finds a path, it is unclear how an algorithm could benefit by deviating from this behavior. Our no-go result suggests that, for some problems, quantum algorithms must necessarily forget the path they take to reach a solution in order to outperform classical computation.
翻译:所谓的焊接树问题提供了一个黑箱问题的例子,它可以通过量子漫步比任何古典算法更快的速度以指数化的速度解决。鉴于一个特殊的 EnTRance 顶点的名称,量子漫步可以使用多元性查询找到另一个不同的 EXIT 顶点,尽管没有找到从 EnTRance 到 EXIT 的任何特定路径。 20年来,这是一个公开的问题, 是否有有效的量子算法来找到这条路径, 或即使对于量子计算机, 也很难找到寻寻路的问题 。 我们表明, 高效量子算法的自然等级不可能找到从 EnTRance 到 EXIT 的路径。 具体地说, 我们考虑的算法是, 在其超级位置的每个分支中, 总是储存一套连接的 EXIT 顶点标签, 形成连接的子图, 包括 ENTRancenance 和 。 并且只提供这些顶点的顶点标签作为星体的输入。 虽然这并不排除量子算法的可能性, 但是, 我们不清楚一种算法如何从这一行为中解开来得益。 我们的不易发现它们。 我们的算法结果表明, 为了某些解路法必然会忽略。