We give a near-linear time sampler for the Gibbs distribution of the ferromagnetic Ising models with edge activities $\boldsymbol{\beta} > 1$ and external fields $\boldsymbol{\lambda}<1$ (or symmetrically, $\boldsymbol{\lambda}>1$) on general graphs with bounded or unbounded maximum degree. Our algorithm is based on the field dynamics given in [CLV21]. We prove the correctness and efficiency of our algorithm by establishing spectral independence of distribution of the random cluster model and the rapid mixing of Glauber dynamics on the random cluster model in a low-temperature regime, which may be of independent interest.
翻译:我们给Gibbs分配具有边际活动的铁磁脉冲模型近线时间取样员,该模型的边际活动为$\boldsymbol_beta} > 1美元和外部字段$\boldsymbol_lambda}1美元(或对称,$\boldsymbol_lambda}$1美元),用于有约束或无约束最大程度的一般图。我们的算法基于[CLV21]中给出的实地动态。我们通过在随机集束模型的分布上建立光谱独立性和在低温系统中随机集模型上迅速混合格拉贝尔动力,我们证明了我们的算法的正确性和效率。