In this paper, a new regularization term is proposed to solve mathematical image problems. By using difference operators in the four directions; horizontal, vertical and two diagonal directions, an estimation of derivative amplitude is found. Based on the new obtained estimation, a new regularization term will be defined, which can be viewed as a new discretized total variation (TVprn) model. By improving TVprn, a more effective regularization term is introduced. By finding conjugate of TVprn and producing vector fields with special constraints, a new discretized TV for two dimensional discrete functions is proposed (TVnew). The capability of the new TV model to solve mathematical image problems is examined in some numerical experiments. It is shown that the new proposed TV model can reconstruct the edges and corners of the noisy images better than other TVs. Moreover, two test experiments of resolution enhancement problem are solved and compared with some other different TVs.
翻译:本文提出了一个新的正规化术语,以解决数学图像问题。 通过在四个方向上使用差异操作员; 水平、 垂直和两个对角方向, 找到了衍生物振幅的估计值。 根据新的估计, 将定义一个新的正规化术语, 这可以被视为一个新的分化总变异( TVprn) 模式。 通过改进TVPrn, 引入了一个更有效的正规化术语。 通过寻找 TVprn 的共和和生成有特殊限制的矢量字段, 将提出一个新的独立化电视, 用于两个维的离散功能( TVEWEV ) 。 新的电视模型解决数学图像问题的能力将在一些数字实验中研究。 显示, 新的拟议电视模型可以比其他电视更好地重建噪音图像的边缘和角落。 此外, 解析增强问题的两个测试实验会得到解决, 并且与其他不同的电视进行比较 。