Real-world contracts are often ambiguous. Recent work by D\"utting et al. (EC 2023, Econometrica 2024) models ambiguous contracts as a collection of classic contracts, with the agent choosing an action that maximizes his worst-case utility. In this model, optimal ambiguous contracts have been shown to be ``simple" in that they consist of single-outcome payment (SOP) contracts, and can be computed in polynomial-time. However, this simplicity is challenged by the potential need for many classic contracts. Motivated by this, we explore \emph{succinct} ambiguous contracts, where the ambiguous contract is restricted to consist of at most $k$ classic contracts. Unlike in the unrestricted case, succinct ambiguous contracts are no longer composed solely of SOP contracts, making both their structure and computation more complex. We show that, despite this added complexity, optimal succinct ambiguous contracts are governed by a simple divide-and-conquer principle, showing that they consist of ``shifted min-pay contracts" for a suitable partition of the actions. This structural insight implies a characterization of implementability by succinct ambiguous contracts, and can be leveraged to devise an algorithm for the optimal succinct ambiguous contract. While this algorithm is polynomial for $k$ sufficiently close to $n$, for smaller values of $k$, this algorithm is exponential, and we show that this is inevitable (unless P=NP) by establishing NP-hardness for any constant $k$, or $k=\beta n$ for some $\beta\in(0,1)$. Finally, we introduce the succinctness gap measure to quantify the loss incurred due to succinctness, and provide upper and lower bounds on this gap. Interestingly, in the case where we are missing just a single contract from the number sufficient to obtain the utility of the unrestricted case, the principal's utility drops by a factor of $2$, and this is tight.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员