Numerous studies have been devoted to the estimation and inference problems for functional linear models (FLM). However, few works focus on model checking problem that ensures the reliability of results. Limited tests in this area do not have tractable null distributions or asymptotic analysis under alternatives. Also, the functional predictor is usually assumed to be fully observed, which is impractical. To address these problems, we propose an adaptive model checking test for FLM. It combines regular moment-based and conditional moment-based tests, and achieves model adaptivity via the dimension of a residual-based subspace. The advantages of our test are manifold. First, it has a tractable chi-squared null distribution and higher powers under the alternatives than its components. Second, asymptotic properties under different underlying models are developed, including the unvisited local alternatives. Third, the test statistic is constructed upon finite grid points, which incorporates the discrete nature of collected data. We develop the desirable relationship between sample size and number of grid points to maintain the asymptotic properties. Besides, we provide a data-driven approach to estimate the dimension leading to model adaptivity, which is promising in sufficient dimension reduction. We conduct comprehensive numerical experiments to demonstrate the advantages the test inherits from its two simple components.
翻译:对功能线性模型(FLM)的估算和推断问题进行了大量研究。然而,很少有工作侧重于确保结果可靠性的模型检查问题。这一领域的有限测试在替代方法下没有可伸缩的无线分布或无症状分析。此外,通常认为功能预测器是完全观察的,这是不切实际的。为了解决这些问题,我们建议对FLM进行适应性模型检查测试。我们建议对功能线性模型进行定期的基于时刻和有条件的基于时刻的测试,并通过残余基于时间的子空间的尺寸实现模型适应性。我们测试的优点是多方面的。首先,在替代方法下,它具有可伸缩的无线分布和高于其组成部分的功率。第二,在不同基础模型下开发了无症状特性特性,包括未受监视的当地替代品。第三,测试统计是在有限的网点上构建的,其中纳入了所收集的数据的离散性质。我们开发了样本大小与网点数目之间的适当关系,以维持基于剩余空间的特性。此外,我们提供了一种由数据驱动的方法,用以估计在模型组成部分下进行综合性实验时空性试验的方面,我们从充分的实验中展示了两个方面展示了基础性。