Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6\% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.
翻译:暂无翻译