Autonomous driving has made great progress and been introduced in practical use step by step. On the other hand, the concept of personal mobility is also getting popular, and its autonomous driving specialized for individual drivers is expected for a new step. However, it is difficult to collect a large driving dataset, which is basically required for the learning of autonomous driving, from the individual driver of the personal mobility. In addition, when the driver is not familiar with the operation of the personal mobility, the dataset will contain non-optimal data. This study therefore focuses on an autonomous driving method for the personal mobility with such a small and noisy, so-called personal, dataset. Specifically, we introduce a new loss function based on Tsallis statistics that weights gradients depending on the original loss function and allows us to exclude noisy data in the optimization phase. In addition, we improve the visualization technique to verify whether the driver and the controller have the same region of interest. From the experimental results, we found that the conventional autonomous driving failed to drive properly due to the wrong operations in the personal dataset, and the region of interest was different from that of the driver. In contrast, the proposed method learned robustly against the errors and successfully drove automatically while paying attention to the similar region to the driver. Attached video is also uploaded on youtube: https://youtu.be/KEq8-bOxYQA


翻译:自主驾驶取得了巨大进步,并逐步在实际使用方面逐步引入了自主驾驶。另一方面,个人流动的概念也越来越受欢迎,个人驾驶者专用的自主驾驶为个人驾驶者专用,预计会有一个新的步骤。然而,很难从个人驾驶者个人驾驶者那里收集大型驾驶数据集,这是学习自主驾驶所需的。此外,当驾驶者不熟悉个人调动的操作时,数据集将包含非最佳的数据。因此,本研究侧重于个人流动的自主驾驶方法,其规模如此小且吵闹,所谓的个人数据集。具体地说,我们根据Tsallis统计引入一个新的损失函数,根据原损失函数加权梯度,允许我们在优化阶段排除噪音数据。此外,我们改进视觉化技术,以核实驾驶者和控制者是否拥有同样感兴趣的区域。根据实验结果,我们发现常规自主驾驶未能正确驱动,因为个人数据集操作不当,兴趣区域与驱动者Q不同。相比之下,我们根据Tsalllilis统计的梯度调整了RVeVA,同时将自动学习了RUB/GUA。在A上对驱动器的注意度上方的正确度。我们,对UBUA的注意是自动学习的方法。在RUB/UUA上方的正确学习。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员