Consider a system of $n$ parallel server pools where tasks arrive as a time-varying Poisson process. The system aims at balancing the load by using an inner control loop with an admission threshold to assign incoming tasks to server pools; as an outer control loop, a learning scheme adjusts this threshold over time in steps of $\Delta$ units, to keep it aligned with the time-varying overall load. If the fluctuations in the normalized load are smaller than $\Delta$, then we prove that the threshold settles for all large enough $n$ and balances the load when $\Delta = 1$. Our model captures a tradeoff between optimality and stability, since for higher $\Delta$ the degree of balance decreases, but the threshold remains constant under larger load fluctuations. The analysis of this model is mathematically challenging, particularly since the learning scheme relies on subtle variations in the occupancy state of the system which vanish on the fluid scale; the methodology developed in this paper overcomes this hurdle by leveraging the tractability of the specific system dynamics. Strong approximations are used to prove certain dynamical properties which are then used to characterize the behavior of the system, without relying on a traditional fluid-limit analysis.
翻译:考虑一个由美元平行服务器集合组成的系统, 任务到达时是一个时间变化的 Poisson 进程。 这个系统的目的是通过使用内部控制环和输入门槛来平衡负荷, 向服务器集合分配新任务; 作为外部控制环, 一个学习计划在一段时间内调整这个阈值, 以美元为单位, 使其与时间变化的总负荷保持一致。 如果正常负荷的波动小于 $\ Delta$, 那么我们就能证明所有任务都达到足够大的阈值, 并在 $\ Delta = 1 美元时平衡负值。 我们的模型在最佳性和稳定性之间找到平衡点, 因为对于更高的 $\ Delta$ 来说, 平衡度下降的程度, 但阈值在更大的负荷波动下保持不变 。 这个模型的分析具有数学上的挑战性, 特别是因为学习计划依赖于系统占用状态的细微变化, 后者在流体尺度上消失; 本文中制定的方法通过利用特定系统动态的可伸缩性来克服这一障碍。 强烈的近度用于证明某些动态特性的特性, 然后不依赖传统的流体分析。