Differential Privacy offers strong guarantees such as immutable privacy under post processing. Thus it is often looked to as a solution to learning on scattered and isolated data. This work focuses on supervised manifold learning, a paradigm that can generate fine-tuned manifolds for a target use case. Our contributions are two fold. 1) We present a novel differentially private method \textit{PrivateMail} for supervised manifold learning, the first of its kind to our knowledge. 2) We provide a novel private geometric embedding scheme for our experimental use case. We experiment on private "content based image retrieval" - embedding and querying the nearest neighbors of images in a private manner - and show extensive privacy-utility tradeoff results, as well as the computational efficiency and practicality of our methods.
翻译:不同隐私提供了强有力的保障, 如在后处理中不可改变的隐私。 因此, 通常被看成是学习分散和孤立数据的解决方案。 这项工作侧重于监督的多功能学习, 这个范例可以为目标使用案例生成微调的元件。 我们的贡献是两个折叠的 。 1) 我们展示了用于监督的多功能学习的新颖的有差异的私人方法\ textit{ PrimeMail}, 这是我们所了解的首个类型 。 2) 我们为实验使用案例提供了一个新型的私人几何嵌入计划。 我们实验了私人的“ 以内容为基础的图像检索 ” — 以私人的方式嵌入和查询图像的近邻 — 并展示了广泛的隐私效用交换结果, 以及我们方法的计算效率和实用性 。