Recently, ChatGPT or InstructGPT like large language models (LLM) has made a significant impact in the AI world. These models are incredibly versatile, capable of performing language tasks on par or even exceeding the capabilities of human experts. Many works have attempted to reproduce the complex InstructGPT's RLHF (Reinforcement Learning with Human Feedback) training pipeline. However, the mainstream distributed RLHF training methods typically adopt a fixed model placement strategy, referred to as the Flattening strategy. This strategy treats all four models involved in RLHF as a single entity and places them on all devices, regardless of their differences. Unfortunately, this strategy exacerbates the generation bottlenecks in the RLHF training and degrades the overall training efficiency. To address these issues, we propose an adaptive model placement framework that offers two flexible model placement strategies. These strategies allow for the agile allocation of models across devices in a fine-grained manner. The Interleaving strategy helps reduce memory redundancy and communication costs during RLHF training. On the other hand, the Separation strategy improves the throughput of model training by separating the training and generation stages of the RLHF pipeline. Notably, this framework seamlessly integrates with other mainstream techniques for acceleration and enables automatic hyperparameter search. Extensive experiments have demonstrated that our Interleaving and Separation strategies can achieve notable improvements up to 11x, compared to the current state-of-the-art (SOTA) approaches. These experiments encompassed a wide range of training scenarios, involving models of varying sizes and devices of different scales. The results highlight the effectiveness and superiority of our approaches in accelerating the training of distributed RLHF.
翻译:暂无翻译