In this paper, we study the variable-order (VO) time-fractional diffusion equations. For a VO function $\alpha(t)\in(0,1)$, we develop an exponential-sum-approximation (ESA) technique to approach the VO Caputo fractional derivative. The ESA technique keeps both the quadrature exponents and the number of exponentials in the summation unchanged at the different time levels. Approximating parameters are properly selected to achieve efficient accuracy. Compared with the general direct method, the proposed method reduces the storage requirement from $\mathcal{O}(n)$ to $\mathcal{O}(\log^2 n)$ and the computational cost from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\log^2 n)$, respectively, with $n$ being the number of the time levels. When this fast algorithm is exploited to construct a fast ESA scheme for the VO time-fractional diffusion equations, the computational complexity of the proposed scheme is only of $\mathcal{O}(mn\log^2 n)$ with $\mathcal{O}(m\log^2n)$ storage requirement, where $m$ denotes the number of spatial grids. Theoretically, the unconditional stability and error analysis of the fast ESA scheme are given. The effectiveness of the proposed algorithm is verified by numerical examples.
翻译:在本文中, 我们研究可变顺序( VO) 时间折射扩散方程式。 对于一个 VO 函数 $\ alpha( t)\ in( 0, 1) 美元, 我们开发了一种指数和对应法( ESA) 技术, 以接近 VO Caputo 分解衍生物。 欧空局的技术将二次指数和总和的指数数保持在不同的时间水平上保持不变。 匹配参数被适当选择, 以达到高效的准确性。 与一般的直接方法相比, 与一般的直接方法相比, 拟议方法将存储需求从 $\ mathcal{ O} (log_ 2 n) 降低到 $\ mcall ( log_ 2 n) 美元, 计算成本成本从 $\ compublical{ O} (n_ log_ ral_ ral_ ral_ ral_ 美元) 计算公式的精度, 以 $_ m ral_ ral_ ral_ roma} 美元计算公式的精度, ral_ ral_ ral_ ral_