Logical Table-to-Text (LT2T) generation is tasked with generating logically faithful sentences from tables. There currently exists two challenges in the field: 1) Faithfulness: how to generate sentences that are factually correct given the table content; 2) Diversity: how to generate multiple sentences that offer different perspectives on the table. This work proposes LoFT, which utilizes logic forms as fact verifiers and content planners to control LT2T generation. Experimental results on the LogicNLG dataset demonstrate that LoFT is the first model that addresses unfaithfulness and lack of diversity issues simultaneously. Our code is publicly available at https://github.com/Yale-LILY/LoFT.
翻译:逻辑表格到文字(LT2T)的一代负责从表格中得出符合逻辑的正确句子,目前在这一领域存在两个挑战:(1) 信仰性:如何生成根据表格内容真实无误的句子;(2) 多样性:如何生成多句句子,在表格中提供不同观点。这项工作提议LoFT, 使用逻辑格式作为事实验证者和内容规划者来控制LT2T的生成。逻辑NLG数据集的实验结果显示LoFT是第一个同时处理不忠和缺乏多样性问题的模型。我们的代码可在https://github.com/Yale-Lily/LOFT上公开查阅。