Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements, including text, logo, and underlay, which is a key to automatic template-free creative graphic design. In practical applications, e.g., poster designs, the canvas is originally non-empty, and both inter-element relationships as well as inter-layer relationships should be concerned when generating a proper layout. A few recent works deal with them simultaneously, but they still suffer from poor graphic performance, such as a lack of layout variety or spatial non-alignment. Since content-aware visual-textual presentation layout is a novel task, we first construct a new dataset named PosterLayout, which consists of 9,974 poster-layout pairs and 905 images, i.e., non-empty canvases. It is more challenging and useful for greater layout variety, domain diversity, and content diversity. Then, we propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers, and a novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts. Specifically, the discriminator is design-sequence-aware and will supervise the "design" process of the generator. Experimental results verify the usefulness of the new benchmark and the effectiveness of the proposed approach, which achieves the best performance by generating suitable layouts for diverse canvases.


翻译:内容感知的视觉-文本呈现布局旨在为预定义元素(包括文本、标志和底层)在给定画布上排列空间,这是自动无模板创意图形设计的关键。在实际应用中,例如海报设计,画布最初是非空的,生成适当的布局时应同时考虑元素间关系和层间关系。最近的一些工作同时处理它们,但仍然存在着图形性能差的问题,例如缺乏布局变化或空间未对齐等问题。由于内容感知的视觉-文本呈现布局是一项新颖的任务,因此我们首先构建了一个名为海报排版的新数据集,它包括9974个海报布局对和905张图像(即非空画布)。它更具挑战性和实用性,包括更多的布局变化、领域多样性和内容多样性。然后,我们提出了设计序列形成(DSF),对布局中的元素进行重新组织,以模仿人类设计师的设计过程,并提出了一种新的基于CNN-LSTM的有条件生成对抗网络(GAN)来生成合适的布局。具体而言,鉴别器具有设计序列感知性,将监督生成器的“设计”过程。实验结果证明了新基准的实用性以及所提出方法的有效性,它通过为不同的画布生成适当的布局而取得了最佳性能。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年7月30日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
文本生成公开数据集/开源工具/经典论文详细列表分享
深度学习与NLP
30+阅读 · 2019年9月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员