In this paper, we build on using the class of f-divergence induced coherent risk measures for portfolio optimization and derive its necessary optimality conditions formulated in CAPM format. We have derived a new f-Beta similar to the Standard Betas and previous works in Drawdown Betas. The f-Beta evaluates portfolio performance under an optimally perturbed market probability measure and this family of Beta metrics gives various degrees of flexibility and interpretability. We conducted numerical experiments using DOW 30 stocks against a chosen market portfolio as the optimal portfolio to demonstrate the new perspectives provided by Hellinger-Beta as compared with Standard Beta and Drawdown Betas, based on choosing square Hellinger distance to be the particular choice of f-divergence function in the general f-divergence induced risk measures and f-Betas. We calculated Hellinger-Beta metrics based on deviation measures and further extended this approach to calculate Hellinger-Betas based on drawdown measures, resulting in another new metric which we termed Hellinger-Drawdown Beta. We compared the resulting Hellinger-Beta values under various choices of the risk aversion parameter to study their sensitivity to increasing stress levels.


翻译:f-散度引发的风险度量资产组合优化中的f-Beta 在本文中,我们建立在使用f-散度引发的一类凸的风险度量的基础上进行了资产组合优化,并推导了其CAPM格式下必要的最优条件。我们推导出了类似于标准Beta和以前工作中的下跌Beta的新的f-Beta。f-Beta在最优扰动市场概率测量下评估资产组合性能,该Beta度量值提供了各种程度的灵活性和可解释性。我们使用DOW 30股票对比选择市场投资组合作为最优投资组合的情形下,演示了基于将平方Hellinger距离选为一般f-散度函数中的特定选择的Hellinger-Beta相比标准Beta和下跌Beta所提供的新视角。我们根据偏差度量计算了基于Hellinger-Beta的度量,并进一步扩展了这种方法来计算基于回撤度量的Hellinger-Betas,得到一种新的度量指标,我们将其称为Hellinger-Drawdown Beta。我们在不同的风险厌恶参数选择下比较了不同Hellinger-Beta值,以研究它们对于增加压力水平的敏感性。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员