In this paper, we build on using the class of f-divergence induced coherent risk measures for portfolio optimization and derive its necessary optimality conditions formulated in CAPM format. We have derived a new f-Beta similar to the Standard Betas and previous works in Drawdown Betas. The f-Beta evaluates portfolio performance under an optimally perturbed market probability measure and this family of Beta metrics gives various degrees of flexibility and interpretability. We conducted numerical experiments using DOW 30 stocks against a chosen market portfolio as the optimal portfolio to demonstrate the new perspectives provided by Hellinger-Beta as compared with Standard Beta and Drawdown Betas, based on choosing square Hellinger distance to be the particular choice of f-divergence function in the general f-divergence induced risk measures and f-Betas. We calculated Hellinger-Beta metrics based on deviation measures and further extended this approach to calculate Hellinger-Betas based on drawdown measures, resulting in another new metric which we termed Hellinger-Drawdown Beta. We compared the resulting Hellinger-Beta values under various choices of the risk aversion parameter to study their sensitivity to increasing stress levels.
翻译:f-散度引发的风险度量资产组合优化中的f-Beta
在本文中,我们建立在使用f-散度引发的一类凸的风险度量的基础上进行了资产组合优化,并推导了其CAPM格式下必要的最优条件。我们推导出了类似于标准Beta和以前工作中的下跌Beta的新的f-Beta。f-Beta在最优扰动市场概率测量下评估资产组合性能,该Beta度量值提供了各种程度的灵活性和可解释性。我们使用DOW 30股票对比选择市场投资组合作为最优投资组合的情形下,演示了基于将平方Hellinger距离选为一般f-散度函数中的特定选择的Hellinger-Beta相比标准Beta和下跌Beta所提供的新视角。我们根据偏差度量计算了基于Hellinger-Beta的度量,并进一步扩展了这种方法来计算基于回撤度量的Hellinger-Betas,得到一种新的度量指标,我们将其称为Hellinger-Drawdown Beta。我们在不同的风险厌恶参数选择下比较了不同Hellinger-Beta值,以研究它们对于增加压力水平的敏感性。