项目名称: 随机系数和带跳的线性随机微分系统的H2/H∞控制
项目编号: No.11426154
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 王美娇
作者单位: 上海理工大学
项目金额: 3万元
中文摘要: 本项目研究随机系数和带跳的线性随机微分系统的H2/H∞控制,主要内容为:1、研究扩散项依赖于干扰且系统参数为随机过程的H2/H∞控制。界实引理反映系统的鲁棒性能与未定Riccati方程的可解性之间的等价关系,它的解决使得H2/H∞控制问题迎刃而解。在获得随机系数界实引理的基础上,我们得到H2/H∞控制问题的解可由耦合的倒向随机Riccati方程的解线性状态反馈表示;2、作为随机系数界实引理的特殊情形,研究扩散项依赖于干扰、系统参数含Brown运动的界实引理;3、研究含Markov跳变参数的由Brown运动和Poisson点过程驱动的跳扩散系统的界实引理,在此基础上,探讨H2/H∞控制问题。本项目的研究内容直接来源于鲁棒控制和随机控制中富有挑战性的热点问题,具有重要的理论和实际意义。
中文关键词: H2/H∞控制;Markov跳参数;Poisson跳扩散系统;界实引理;动态规划
英文摘要: This project contributes to the study of H2/H∞control for linear stochastic differential system with random coefficients and random jumps. The main contents include the following: 1.find stochastic H2/H∞ control for the system with disturbance dependent noise and random coefficients. The bounded real lemma reflects the equivalence between the robustness and the solvability of the indefinite Riccati equation, which makes the H2/H∞ control smoothly resolvable. We first prove the bounded real lemma, then obtain the state feedback solution to H2/H∞ control in terms of the solutions to the coupled backward stochastic Riccati equations; 2.study the bounded real lemma when the system coefficients are driven by Brownian Motion, which is regarded as a special case of random coefficients; 3.study the bounded real lemma for jump diffusion system driven by Brownian motion and Poisson point process with Markov jumping parameters, and then investigate the H2/H∞ control problem. The contents of this project arise from the hot topics in the theory of robust control and stochastic control, which have profound implications in both theory and engineering application.
英文关键词: H2/H∞ control;Markov jumping parameters;Poisson jump-diffusion system;Bounded real lemma;Dynamic programing