In this paper, we propose a deep evolutionary learning (DEL) process that integrates fragment-based deep generative model and multi-objective evolutionary computation for molecular design. Our approach enables (1) evolutionary operations in the latent space of the generative model, rather than the structural space, to generate novel promising molecular structures for the next evolutionary generation, and (2) generative model fine-tuning using newly generated high-quality samples. Thus, DEL implements a data-model co-evolution concept which improves both sample population and generative model learning. Experiments on two public datasets indicate that sample population obtained by DEL exhibits improved property distributions, and dominates samples generated by multi-objective Bayesian optimization algorithms.
翻译:在本文中,我们提出一个深层进化学习(DEL)过程,将分子设计的基于碎片的深基因模型和多目标进化计算结合起来。我们的方法使(1) 在基因模型潜在空间,而不是结构空间的进化操作能够为下一代进化代创造出新的有希望的分子结构,(2) 利用新生成的高质量样本进行基因化模型微调。因此,DEL实施了一个数据模型共同进化概念,既改进抽样人口,又改进基因化模型的学习。对两个公共数据集的实验表明,通过DEL获得的样本人口展示了更好的财产分布,并主宰了多目标的贝叶斯优化算法产生的样本。