Many dimensionality and model reduction techniques rely on estimating dominant eigenfunctions of associated dynamical operators from data. Important examples include the Koopman operator and its generator, but also the Schr\"odinger operator. We propose a kernel-based method for the approximation of differential operators in reproducing kernel Hilbert spaces and show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore, we exploit that, under certain conditions, the Schr\"odinger operator can be transformed into a Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows us to apply methods developed for the analysis of high-dimensional stochastic differential equations to quantum mechanical systems.
翻译:许多维度和减少模型技术依赖于从数据中估算相关动态操作员的主要机能。重要的例子包括Koopman操作员及其发电机,还有Schr\'odinger操作员。我们建议了一种基于内核的方法,用于不同操作员在复制Hilbert空间时接近不同的操作员,并表明如何通过解决辅助矩阵元值问题来估计机能。由此产生的算法应用到分子动态和量子化学的例子。此外,我们利用这种方法,在某些条件下,Schr\'odinger操作员可以变成一个与漂浮扩散过程相对应的Kolmogorov后向操作员。这使我们能够将开发的方法应用于量子机械系统,用于分析高维异差方程式。