Surveillance anomaly detection searches for anomalous events, such as crimes or accidents, among normal scenes. Because it occurs rarely, most training data consists of unlabeled, normal videos, which makes the task challenging. Most existing methods use an autoencoder (AE) to learn reconstructing normal videos and detect anomalies by a failure to reconstruct the appearance of abnormal scenes. However, because anomalies are distinguished by appearance or motion, many previous approaches have explicitly separated appearance and motion information--for example, using a pre-trained optical flow model. This explicit separation restricts reciprocal representation capabilities between two information. In contrast, we propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features, and a single decoder that combines them to learn normal video patterns. For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features through normalizing flow (NF)-based generative models to learn the tractable likelihoods and find anomalies using out-of-distribution detection. NF models intensify ITAE performance by learning normality through implicitly learned features. Finally, we demonstrate the effectiveness of ITAE and its feature distribution modeling in three benchmarks, especially on the Shanghai Tech Campus (ST) database composed of various anomalies in real-world scenarios.


翻译:在正常场景中,由于通常场景中发生的犯罪或事故等异常监视异常现象的探测探索,通常场景中,由于很少发生,大多数培训数据都由没有标签的正常视频组成,使得任务具有挑战性。大多数现有方法都使用自动编码器(AE)学习重建正常视频,并通过无法重建异常场景的外观来检测异常现象。然而,由于异常现象有外观或动作的区别,许多以前的方法都明显地将外观和运动信息(例如,使用预先训练的光学流模式)区分开来。这种明确区分限制了两种信息之间的相互代表能力。相比之下,我们建议采用一种隐含双向AE(ITAE)结构,其中两个编码器隐含的外观和动作模型特征,以及一个单一的解码器,将两者结合起来,学习正常视频模式。关于正常场景的复杂分布,我们建议通过正常流程(NF)基础的变异模型,对ITAE特征进行正常的估算,以学习可感应变的可能性,并利用分流检测的异常现象。NF模型通过学习隐性学的正常性特征强化ITAE的特征来强化ITAE的性模型。最后,我们展示了ITADADR在S的系统的三个模型中,在S-SDBSDSDBDBDS的模型中,在SBDS的模型中展示中展示了IDBDBDS的三种模型中展示了IT的原理。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月7日
Learning Memory-guided Normality for Anomaly Detection
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员