This brief sketches initial progress towards a unified energy-based solution for the semi-supervised visual anomaly detection and localization problem. In this setup, we have access to only anomaly-free training data and want to detect and identify anomalies of an arbitrary nature on test data. We employ the density estimates from the energy-based model (EBM) as normalcy scores that can be used to discriminate normal images from anomalous ones. Further, we back-propagate the gradients of the energy score with respect to the image in order to generate a gradient map that provides pixel-level spatial localization of the anomalies in the image. In addition to the spatial localization, we show that simple processing of the gradient map can also provide alternative normalcy scores that either match or surpass the detection performance obtained with the energy value. To quantitatively validate the performance of the proposed method, we conduct experiments on the MVTec industrial dataset. Though still preliminary, our results are very promising and reveal the potential of EBMs for simultaneously detecting and localizing unforeseen anomalies in images.
翻译:这份简短的草图为半监督的视觉异常探测和本地化问题提供了一个统一的能源解决方案。 在这个设置中,我们只能获得无异常的培训数据,并希望在测试数据中检测和识别任意性质的异常现象。我们使用基于能源模型的密度估计值作为常态评分,用于区别异常的正常图像。此外,我们还对图像的能量评分梯度进行反向分析,以便生成一个梯度图,提供图像异常现象的像素级空间本地化。除了空间本地化外,我们还表明,简单处理梯度图还可以提供替代的正常评分,这些评分既可以与能源价值的检测性能相匹配,也可以超过检测性能。为了对拟议方法的性能进行定量验证,我们在MVTec工业数据集上进行了实验。虽然还只是初步的,但我们的结果仍然非常有希望,并揭示了EBMBs在图像中同时检测和本地化意外异常现象的可能性。