Embedded camera systems are ubiquitous, representing the most widely deployed example of a wireless embedded system. They capture a representation of the world - the surroundings illuminated by visible or infrared light. Despite their widespread usage, the architecture of embedded camera systems has remained unchanged, which leads to limitations. They visualize only a tiny portion of the world. Additionally, they are energy-intensive, leading to limited battery lifespan. We present PixelGen, which re-imagines embedded camera systems. Specifically, PixelGen combines sensors, transceivers, and low-resolution image and infrared vision sensors to capture a broader world representation. They are deliberately chosen for their simplicity, low bitrate, and power consumption, culminating in an energy-efficient platform. We show that despite the simplicity, the captured data can be processed using transformer-based image and language models to generate novel representations of the environment. For example, we demonstrate that it can allow the generation of high-definition images, while the camera utilises low-power, low-resolution monochrome cameras. Furthermore, the capabilities of PixelGen extend beyond traditional photography, enabling visualization of phenomena invisible to conventional cameras, such as sound waves. PixelGen can enable numerous novel applications, and we demonstrate that it enables unique visualization of the surroundings that are then projected on extended reality headsets. We believe, PixelGen goes beyond conventional cameras and opens new avenues for research and photography.
翻译:暂无翻译