We use deep distributional reinforcement learning (RL) to develop hedging strategies for a trader responsible for derivatives dependent on a particular underlying asset. The transaction costs associated with trading the underlying asset are usually quite small. Traders therefore tend to carry out delta hedging daily, or even more frequently, to ensure that the portfolio is almost completely insensitive to small movements in the asset's price. Hedging the portfolio's exposure to large asset price movements and volatility changes (gamma and vega hedging) is more expensive because this requires trades in derivatives, for which transaction costs are quite large. Our analysis takes account of these transaction cost differences. It shows how RL can be used to develop a strategy for using options to manage gamma and vega risk with three different objective functions. These objective functions involve a mean-variance trade-off, value at risk, and conditional value at risk. We illustrate how the optimal hedging strategy depends on the asset price process, the trader's objective function, the level of transaction costs when options are traded, and the maturity of the options used for hedging.
翻译:我们利用深度分配强化学习(RL)来为依赖特定基本资产的衍生品交易者制定套期保值战略。与交易基础资产有关的交易成本通常相当小。因此,交易者往往每天进行三角套期保值,甚至更频繁地进行三角套期保值,以确保投资组合对资产价格的小规模变动几乎完全不敏感。套期保值对资产价格大幅波动和波动变化(Gamma和Vega套期保值)的影响更为昂贵,因为这需要衍生品交易,而交易成本相当高。我们的分析考虑到了这些交易成本差异。它表明如何利用这些交易成本差异来制定一项战略,利用三种不同的客观功能来利用各种选择来管理伽马和Vega风险。这些客观功能涉及一种平均逆差交易、风险价值和有条件风险价值。我们说明最佳套期保值战略如何取决于资产价格流程、交易者的目标功能、交易选择权的交易成本水平以及套期的成熟性。