The notion of P-stability played an influential role in approximating the permanents, sampling rapidly the realizations of graphic degree sequences, or even studying and improving network privacy. However, we did not have a good insight of the structure of P-stable degree sequence families. In this paper we develop a remedy to overstep this deficiency. We will show, that if an infinite set of graphic degree sequences, characterized by some simple inequalities of their fundamental parameters, is $P$-stable, then it is ``fully graphic'' -- meaning that every degree sequence with an even sum, meeting the specified inequalities, is graphic. The reverse statement also holds: an infinite, fully graphic set of degree sequences characterized by some simple inequalities of their fundamental parameters is P-stable. Along the way, we will significantly strengthen some well-known, older results, and we construct new P-stable families of degree sequences.
翻译:暂无翻译