Automatically generating debates is a challenging task that requires an understanding of arguments and how to negate or support them. In this work we define debate trees and paths for generating debates while enforcing a high level structure and grammar. We leverage a large corpus of tree-structured debates that have metadata associated with each argument. We develop a framework for generating plausible debates which is agnostic to the sentence embedding model. Our results demonstrate the ability to generate debates in real-time on complex topics at a quality that is close to humans, as evaluated by the style, content, and strategy metrics used for judging competitive human debates. In the spirit of reproducible research we make our data, models, and code publicly available.
翻译:自动引发辩论是一项具有挑战性的任务,需要理解各种论点以及如何否定或支持这些论点。在这项工作中,我们界定了辩论的树木和产生辩论的途径,同时执行高层次的结构和语法。我们利用大量与每个论点相关的有元数据的树木结构辩论。我们开发了一个框架,以产生可信的辩论,而这种辩论对于嵌入的句子模式是不可知的。我们的结果表明,我们有能力在与人类关系密切的复杂议题上进行实时辩论,而这种辩论的质量取决于用于评判竞争性人类辩论的风格、内容和战略指标。本着可复制的研究精神,我们公布我们的数据、模型和代码。