An increasing number of virtual reality applications require environments that emulate real-world conditions. These environments often involve dynamic virtual humans showing realistic behaviors. Understanding user perception and navigation among these virtual agents is key for designing realistic and effective environments featuring groups of virtual humans. While collision risk significantly influences human locomotion in the real world, this risk is largely absent in virtual settings. This paper studies the impact of the expected collision feedback on user perception and interaction with virtual crowds. We examine the effectiveness of commonly used collision feedback techniques (auditory cues and tactile vibrations) as well as inducing participants to expect that a physical bump with a real person might occur, as if some virtual humans actually correspond to real persons embodied into them and sharing the same physical space. Our results indicate that the expected collision feedback significantly influences both participant behavior (encompassing global navigation and local movements) and subjective perceptions of presence and copresence. Specifically, the introduction of a perceived risk of actual collision was found to significantly impact global navigation strategies and increase the sense of presence. Auditory cues had a similar effect on global navigation and additionally enhanced the sense of copresence. In contrast, vibrotactile feedback was primarily effective in influencing local movements.
翻译:暂无翻译