In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of stream processors $A^\mathbb{N} \to B^\mathbb{N}$ drawing on ideas of Brouwerian constructivism. Their stream processors have an intensional character; in this paper, we give a corresponding coalgebraic characterisation of extensional stream processors, i.e., the set of continuous functions $A^\mathbb{N} \to B^\mathbb{N}$. Our account sites both our result and that of op. cit. within the apparatus of comodels for algebraic effects originating with Power-Shkaravska. Within this apparatus, the distinction between intensional and extensional equivalence for stream processors arises in the same way as the the distinction between bisimulation and trace equivalence for labelled transition systems and probabilistic generative systems.
翻译:2009年,Hancock、Pattinson和Ghani根据Brouwerian 构造主义的理念,对流体处理器($A ⁇ mathbb{N}\to B ⁇ mathb{N})进行了煤星特征化。它们的流体处理器具有强化性;在本文件中,我们给扩展流处理器(即连续功能的一组$A ⁇ mathb{N})以相应的煤星格特征化。我们的账户网站在原为Power-Shrkaravska的代谢效应共同模型的仪器中,其结果和同前。在这个仪器中,对流体处理器的加固性和扩展等值的区别与有标签的过渡系统和稳定基因系统的加固和追踪等值的区别相同。