In this note, we consider the optimization problem associated with computing the rank decomposition of a symmetric tensor. We show that, in a well-defined sense, minima in this highly nonconvex optimization problem break the symmetry of the target tensor -- but not too much. This phenomenon of symmetry breaking applies to various choices of tensor norms, and makes it possible to study the optimization landscape using a set of recently-developed symmetry-based analytical tools. The fact that the objective function under consideration is a multivariate polynomial allows us to apply symbolic methods from computational algebra to obtain more refined information on the symmetry breaking phenomenon.


翻译:在本说明中,我们考虑了与计算对称振标的分解等级相关的优化问题。我们表明,在定义明确的意义上,这个高度非电流优化问题的微小打破了目标振标的对称性,但并不太多。这种对称性断裂现象适用于对振标的各种选择,并使得有可能使用最近开发的一套对称分析工具来研究优化景观。事实上,所考虑的客观功能是多变量的多元数学,这使我们能够从计算代数中应用符号方法来获取关于对称断裂现象的更精细的信息。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员