We propose a new generator for the generalized inverse Gaussian (GIG) distribution by decomposing the density of GIG into two components. The first component is a truncated inverse Gamma density, in order to sample from which we improve the traditional inverse CDF method. The second component is the product of an exponential pdf and an inverse Gamma CDF. In order to sample from this quasi-density, we develop a rejection sampling procedure that adaptively adjusts the piecewise proposal density according to the user-specified rejection rate or the desired number of cutoff points. The resulting complete algorithm enjoys controllable rejection rate and moderate setup time. It preserves efficiency for both parameter varying case and large sample case.
翻译:我们为Gaussian (GIG) 通用反向分布建议一个新的生成器,将 GIG 的密度分解成两个组成部分。 第一个组成部分是截断的反伽玛密度, 以便从样本中改进传统的反 CDF 方法。 第二个组成部分是指数pdf 和反 Gamma CDF 的产物。 为了从这种准密度中取样, 我们开发了一个拒绝抽样程序, 以根据用户指定的拒绝率或理想的截断点数调整拼图的密度。 由此产生的完整算法拥有可控的拒绝率和中度设置时间。 它为不同参数和大样本都保留了效率。