Domain generalization for semantic segmentation is highly demanded in real applications, where a trained model is expected to work well in previously unseen domains. One challenge lies in the lack of data which could cover the diverse distributions of the possible unseen domains for training. In this paper, we propose a WEb-image assisted Domain GEneralization (WEDGE) scheme, which is the first to exploit the diversity of web-crawled images for generalizable semantic segmentation. To explore and exploit the real-world data distributions, we collect a web-crawled dataset which presents large diversity in terms of weather conditions, sites, lighting, camera styles, etc. We also present a method which injects the style representation of the web-crawled data into the source domain on-the-fly during training, which enables the network to experience images of diverse styles with reliable labels for effective training. Moreover, we use the web-crawled dataset with predicted pseudo labels for training to further enhance the capability of the network. Extensive experiments demonstrate that our method clearly outperforms existing domain generalization techniques.
翻译:面向语义分割的领域泛化在现实应用中得到了广泛需求,在这种应用中,训练好的模型被期望在之前未见的各种领域中工作良好。一个挑战在于缺乏可覆盖训练中各种未参见领域的多样分布的数据。在本文中,我们提出了一种利用 Web 图像多样性实现泛化语义分割的 WEDGE (利用 Web 图像辅助的领域泛化语义分割) 方法。为了探索和利用世界数据分布,我们收集了一个在天气条件、网站、光照、相机样式等方面表现出较大多样性的 Web 抓取数据集。此外,我们还提出了一种方法,能够在训练期间即时将 Web 抓取数据的样式表示注入到源域中,从而使网络能够体验到具有可靠标签的不同风格的图像以进行有效训练。此外,我们使用带有预测伪标签的 Web 抓起数据集进行训练,从而进一步提高网络的性能。广泛的实验表明,我们的方法明显优于现有的领域泛化技术。