The uniqueness of an optimal solution to a combinatorial optimization problem attracts many fields of researchers' attention because it has a wide range of applications, it is related to important classes in computational complexity, and an instance with only one solution is often critical for algorithm designs in theory. However, as the authors know, there is no major benchmark set consisting of only instances with unique solutions, and no algorithm generating instances with unique solutions is known; a systematic approach to getting a problem instance guaranteed having a unique solution would be helpful. A possible approach is as follows: Given a problem instance, we specify a small part of a solution in advance so that only one optimal solution meets the specification. This paper formulates such a ``pre-assignment'' approach for the vertex cover problem as a typical combinatorial optimization problem and discusses its computational complexity. First, we show that the problem is $\Sigma^P_2$-complete in general, while the problem becomes NP-complete when an input graph is bipartite. We then present an $O(2.1996^n)$-time algorithm for general graphs and an $O(1.9181^n)$-time algorithm for bipartite graphs, where $n$ is the number of vertices. The latter is based on an FPT algorithm with $O^*(3.6791^{\tau})$ time for vertex cover number $\tau$. Furthermore, we show that the problem for trees can be solved in $O(1.4143^n)$ time.
翻译:暂无翻译