In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and efficiency for the proposed estimators. The numerical method is based in Raviart-Thomas elements to approximate the pseudostress and piecewise polynomials for the displacement. We illustrate our results with numerical tests.
翻译:在本文中,我们分析对线性弹性树脂值问题混合配方的事后误差估计。 提出了几乎和完全压缩弹性光谱问题的事后估计。 在后处理参数中,我们能够证明拟议估量器的可靠性和效率。 数字方法以Raviart- Thomas 元素为基础, 以近似假压力值和迁移的片状多义值。 我们用数字测试来说明我们的结果 。