Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which are supposed to model certain effects (\citealp{bousquet2011advanced}; \citealp{gelman2013bayesian}). The covariance kernels have unknown parameters which are estimated by the EM-algorithm or Markov Chain Monte Carlo. The estimated parameters are keys to the inference of the features of the regression functions, but identifiability of these parameters has not been investigated. In this paper, we prove identifiability of covariance kernel parameters in two radial basis mixed kernel GPR and radial basis and periodic mixed kernel GPR. We also provide some examples about non-identifiable cases in such mixed kernel GPRs.
翻译:Gausian 进程回归( GPR) 模型是一种流行的非参数回归模型。 在 GPR 中, 回归函数的特征, 如不同程度的平滑度和周期性等, 是通过组合各种covalinace内核来建模的, 这些内核本应模拟某些效果(\ citealp{bousquet2011advanced};\ citealp{gelman2013bayesian} ) 。 共变量内核有未知的参数, 由EM- algorithm 或 Markov 链子 Monte Carlo 来估算。 估计的参数是推断回归函数特征的关键, 但是尚未对这些参数的可识别性进行调查 。 在本文中, 我们证明在两个辐射基混合内核GPR和辐射基中以及定期混合内核 GPR 中存在不可识别的共变内核参数 。 我们还提供了一些实例, 。