Consider $k$ independent random samples from $p$-dimensional multivariate normal distributions. We are interested in the limiting distribution of the log-likelihood ratio test statistics for testing for the equality of $k$ covariance matrices. It is well known from classical multivariate statistics that the limit is a chi-square distribution when $k$ and $p$ are fixed integers. Jiang and Yang~\cite{JY13} and Jiang and Qi~\cite{JQ15} have obtained the central limit theorem for the log-likelihood ratio test statistics when the dimension $p$ goes to infinity with the sample sizes. In this paper, we derive the central limit theorem when either $p$ or $k$ goes to infinity. We also propose adjusted test statistics which can be well approximated by chi-squared distributions regardless of values for $p$ and $k$. Furthermore, we present numerical simulation results to evaluate the performance of our adjusted test statistics and the log-likelihood ratio statistics based on classical chi-square approximation and the normal approximation.
翻译:考虑从 $p$ 维多变量正常分布中独立随机抽样 。 我们有兴趣限制对数值- 类似比率测试统计数据的分布, 以测试 $k$ 等值的共差矩阵。 从传统的多变量统计中可以清楚地知道, 当美元和美元是固定的整数时, 限值是 chi- quare 的分布。 江和Y ⁇ cite{JY13} 以及江和Qi ⁇ cite{JQQ15} 已经获得了日志- 类似比率测试统计数据的中心限值。 当维值 $p$ 到 与样本大小不完全时, 我们有兴趣限制对日志- 类似比率测试统计数据的分布。 在本文中, 当美元或美元到无限值时, 我们得出中心限值值值值值值, 我们还可以提出调整的测试统计数据,, 不论美元和 美元 美元 。 此外, 我们提供数字模拟结果, 来评估我们经调整的测试统计的性能和日志- 比率统计的绩效, 以 古典 cricsqual 近似近似接近和正常的近似接近值为基础, 。