In this paper, we introduce a Deep Neural Network (DNN) to maximize the Proportional Fairness (PF) of the Spectral Efficiency (SE) of uplinks in Cell-Free (CF) massive Multiple-Input Multiple-Output (MIMO) systems. The problem of maximizing the PF of the SE is a non-convex optimization problem in the design variables. We will develop a DNN which takes pilot sequences and large-scale fading coefficients of the users as inputs and produces the outputs of optimal transmit powers. By consisting of densely residual connections between layers, the proposed DNN can efficiently exploit the hierarchical features of the input and motivates the feed-forward nature of DNN architecture. Experimental results showed that, compared to the conventional iterative optimization algorithm, the proposed DNN has excessively lower computational complexity with the trade-off of approximately only 1% loss in the sum rate and the fairness performance. This demonstrated that our proposed DNN is reasonably suitable for real-time signal processing in CF massive MIMO systems.
翻译:在本文中,我们引入了一个深神经网络(DNN),以最大限度地实现无细胞(CF)大规模多投入多输出(MIMO)系统中无细胞(CF)大规模多投入多输出(MIMO)系统上行链点的相对公平性(PF),最大限度地实现无孔多投入多输出(MIMO)系统上行链的相对公平性(PF),最大限度地实现SE的深度神经网络(DNN),使SE大规模多投入多输出(MIMO)系统上端链点的问题成为设计变量中一个非碳化的优化问题。我们将开发一个DNN(DN)网络,将用户的试点序列和大规模减缩系数作为投入,并产生最佳传输能力的产出。通过各层之间的密集剩余连接,拟议的DNNN能够有效地利用输入的分层特征,并激励DNNN结构的进向前特性。实验结果显示,与传统的迭接优化算法相比,拟议的DNN(DNN)的计算复杂度过低,而总率和公平性表现只有大约1%的损失的交换率。这证明我们提议的DNNNNUMIM系统中大约1%的损失率和公平性,这是合理的适合实时信号处理。